If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2-9u-18=0
a = 1; b = -9; c = -18;
Δ = b2-4ac
Δ = -92-4·1·(-18)
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3\sqrt{17}}{2*1}=\frac{9-3\sqrt{17}}{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3\sqrt{17}}{2*1}=\frac{9+3\sqrt{17}}{2} $
| 6=12z | | 10^x=5 | | -1+5x-2x=37 | | 16u4=8u6 | | 10/8=15/t | | F(x)=440+4x | | -9x+15=-22-4x-48 | | 6^x=60 | | 2/9n=3/7 | | -1.5x=-15/8 | | 30+n=3+6 | | 2x+3=12 | | 2a=6+a | | 3x2+12x=3 | | -6=6x-6+4x | | -2(-2+7x)=-150 | | 2n+13=n+5 | | 5x+7x-1/2x+1/4=6 | | y+4=3(-6) | | 3=1/18m | | 5(-7x+6)=310 | | 3w+2=130 | | -5d+6-9=30 | | 7n=2n+19 | | 1/3z-1/2=1/4 | | 6(-1x+4)=-30 | | 1/3a+4=-2 | | 5*3/5w+2=26*5 | | 5+9(1+7r)=21 | | -b÷7=4 | | X2-6x=1 | | 200=-2x-(-6x-5) |